Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 496
Filtrar
1.
Int J Gen Med ; 17: 1651-1664, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38706743

RESUMO

Background: Heart failure (HF) is a chronic disease with a poor prognosis, making it extremely important to assess the prognosis of patients with HF for accurate treatment. Secreted modular calcium-binding protein 2 (SMOC2) is a cysteine-rich acidic secreted protein that plays a pathophysiological role in many diseases, including regulation of vascular growth factor activity. It has previously been found that SMOC2 plays an essential role in cardiac fibrosis in our previous preclinical study, but whether it can be used as a clinical marker in heart failure patients remains unclear. The purpose of this research was to evaluate the correlation between plasma levels of SMOC2 and the prognosis for individuals with HF. Methods: HF patients diagnosed with ischemic cardiomyopathy were enrolled from January to December 2021. Baseline plasma levels of SMOC2 were measured after demographic and clinical features were collected. Linear and nonlinear multivariate Cox regression models were used to determine the association between plasma SMOC2 and patient outcomes during follow-up. All analysis was performed using SPSS, EmpowerStats, and R software. Results: The study included 188 patients, and the average follow-up time was 489.5±88.3 days. The plasma SMOC2 concentrations were positively correlated with N-terminal pro-B-type Natriuretic Peptide (NT-proBNP), left ventricular end-diastolic diameter (LVEDd), and length of hospital stay and were negatively correlated with left ventricular ejection fraction (LVEF) at baseline. A total of 53 patients (28.2%) were rehospitalized due to cardiac deterioration, 14 (7.4%) died, and 37 (19.7%) developed malignant arrhythmias. A fully adjusted multivariate COX regression model showed that SMOC2 is associated with readmission (HR = 1.02, 95% CI:1.012-1.655). A significant increase in rehospitalization risk was observed in group Q2 (HR =1.064, 95% CI: 1.037, 3.662, p=0.005) and group Q3 (HR =1.085, 95% CI:1.086, 3.792, p=0.009) in comparison with group Q1. The p for trend also shows a linear correlation across the three models (P < 0.001). SMOC2 was associated with the severity of HF in patients, but not with all-cause deaths and arrhythmias during follow-up. Conclusion: Plasma SMOC2 is associated with the severity of HF and readmission rate, and is a good predictor of the risk of readmission in patients.

2.
J Alzheimers Dis Rep ; 8(1): 765-776, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38746634

RESUMO

Background: Individuals with mild cognitive impairment (MCI) frequently experience sleep disorders, which may elevate the risk of developing Alzheimer's disease. Yet, sleep types in MCI patients and the factors influencing them have not been sufficiently investigated. Objective: The objective of this study was to explore potential sleep typing and its influencing factors in patients with MCI using latent class analysis. Methods: A cross-sectional survey was conducted in Jiangsu Province, China. Cognitive function in older adults was assessed using neuropsychological tests, including the Montreal Cognitive Assessment Scale-Beijing version (MoCA), the Mini-Mental State Examination (MMSE), the Activities of Daily Living Scale (ADL), and the Clinical Dementia Rating Scale (CDR). Sleep quality was evaluated using the Pittsburgh Sleep Quality Index (PSQI). Latent class analysis based on PSQI scores and multinomial logistic regression analyses were employed to explore the influencing factors of sleep typing. Results: The study included a total of 611 patients with MCI. Latent class analysis identified three latent classes to categorize the sleep patterns of MCI patients: the good sleep type (56.6%), the insufficient sleep type (29.6%), and the difficulty falling asleep type (13.7%). Potential sleep typing is influenced by gender, chronic disease, physical exercise, social activity, brain exercise, smoking, frailty, subjective cognitive status, and global cognitive function. Conclusions: The findings of this study underscore the notable heterogeneity in the sleep patterns of patients with MCI. Future research may provide targeted prevention and interventions to address the characteristics and influencing factors of patients with different subtypes of sleep MCI.

3.
Biomed Pharmacother ; 175: 116614, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38670047

RESUMO

Pseudolaric acid B (PAB), an acid isolated from the roots of Pseudolarix kaempferi gorden, has shown antitumour effects through multiple mechanisms of action. The objective of this study was to investigate the anticancer effect of PAB on non-small cell lung cancer (NSCLC) and its underlying mechanism. In our experiments, we observed that PAB decreased cell viability, inhibited colony formation, induced cell cycle arrest, impeded scratch healing, and increased apoptosis in H1975 and H1650 cells. Additionally, PAB treatment enhanced the fluorescence intensity of MDC staining in NSCLC cells, upregulated the protein expression of microtubule-associated protein light chain 3 II (LC3 II), and downregulated the expression of sequestosome 1 (SQSTM1/P62). Combined treatment with PAB and chloroquine (CQ) increased the protein expression levels of LC3 II and P62 while decreasing the apoptosis of H1975 and H1650 cells. Moreover, treatment with PAB led to significant mTOR inhibition and AMPK activation. PAB combined with compound C (CC) inhibited autophagy and apoptosis. Furthermore, PAB treatment increased intracellular reactive oxygen species (ROS) levels in NSCLC cells, which correlated with the modulation of the AMPK/mTOR signalling pathway and was associated with autophagy and apoptosis. Finally, we validated the antitumour growth activity and mechanism of PAB in vivo using athymic nude mice bearing H1975 tumour cells. In conclusion, our findings suggest that PAB can induce apoptosis and autophagic cell death in NSCLC through the ROS-triggered AMPK/mTOR signalling pathway, making it a promising candidate for future NSCLC treatment.

4.
FEBS J ; 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38676954

RESUMO

Inflammatory signals from immunological cells may cause damage to intestinal epithelial cells (IECs), resulting in intestinal inflammation and tissue impairment. Interferon-γ-inducible protein 16 (IFI16) was reported to be involved in the pathogenesis of Behçet's syndrome (BS). This study aimed to investigate how inflammatory cytokines released by immunological cells and IFI16 participate in the pathogenesis of intestinal BS. RNA sequencing and real-time quantitative PCR (qPCR) showed that the positive regulation of tumor necrosis factor-α (TNF-α) production in peripheral blood mononuclear cells (PBMCs) of intestinal BS patients may be related to the upregulation of polo like kinase 1 (PLK1) in PBMCs (P = 0.012). The plasma TNF-α protein level in intestinal BS was significantly higher than in healthy controls (HCs; P = 0.009). PBMCs of intestinal BS patients and HCs were co-cultured with human normal IECs (NCM460) to explore the interaction between immunological cells and IECs. Using IFI16 knockdown, PBMC-NCM460 co-culture, TNF-α neutralizing monoclonal antibody (mAb), stimulator of interferon genes (STING) agonist 2'3'-cGAMP, and the PLK1 inhibitor SBE 13 HCL, we found that PLK1 promotes the secretion of TNF-α from PBMCs of intestinal BS patients, which causes overexpression of IFI16 and induces apoptosis of IECs via the STING-TBK1 pathway. The expressions of IFI16, TNF-α, cleaved caspase 3, phosphorylated STING (pSTING) and phosphorylated tank binding kinase 1 (pTBK1) in the intestinal ulcer tissue of BS patients were significantly higher than that of HCs (all P < 0.05). PLK1 in PBMCs of intestinal BS patients increased TNF-α secretion, inducing IEC apoptosis via activation of the IFI16-STING-TBK1 pathway. PLK1 and the IFI16-STING-TBK1 pathway may be new therapeutic targets for intestinal BS.

5.
Adv Sci (Weinh) ; : e2401455, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38659236

RESUMO

In this work, a novel liquid nitrogen quenching strategy is engineered to fulfill iron active center coordination reconstruction within iron carbide (Fe3C) modified on biomass-derived nitrogen-doped porous carbon (NC) for initiating rapid hydrogen and oxygen evolution, where the chrysanthemum tea (elm seeds, corn leaves, and shaddock peel, etc.) is treated as biomass carbon source within Fe3C and NC. Moreover, the original thermodynamic stability is changed through the corresponding force generated by liquid nitrogen quenching and the phase transformation is induced with rich carbon vacancies with the increasing instantaneous temperature drop amplitude. Noteworthy, the optimizing intermediate absorption/desorption is achieved by new phases, Fe coordination, and carbon vacancies. The Fe3C/NC-550 (550 refers to quenching temperature) demonstrates outstanding overpotential for hydrogen evolution reaction (26.3 mV at -10 mA cm-2) and oxygen evolution reaction (281.4 mV at 10 mA cm-2), favorable overall water splitting activity (1.57 V at 10 mA cm-2). Density functional theory (DFT) calculations further confirm that liquid nitrogen quenching treatment can enhance the intrinsic electrocatalytic activity efficiently by optimizing the adsorption free energy of reaction intermediates. Overall, the above results authenticate that liquid nitrogen quenching strategy open up new possibilities for obtaining highly active electrocatalysts for the new generation of green energy conversion systems.

6.
Quant Imaging Med Surg ; 14(4): 3131-3145, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38617169

RESUMO

Background: The MYCN copy number category is closely related to the prognosis of neuroblastoma (NB). Therefore, this study aimed to assess the predictive ability of 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) radiomic features for MYCN copy number in NB. Methods: A retrospective analysis was performed on 104 pediatric patients with NB that had been confirmed by pathology. To develop the Bio-omics model (B-model), which incorporated clinical and biological aspects, PET/CT radiographic features, PET quantitative parameters, and significant features with multivariable stepwise logistic regression were preserved. Important radiomics features were identified through least absolute shrinkage and selection operator (LASSO) and univariable analysis. On the basis of radiomics features obtained from PET and CT scans, the radiomics model (R-model) was developed. The significant bio-omics and radiomics features were combined to establish a Multi-omics model (M-model). The above 3 models were established to differentiate MYCN wild from MYCN gain and MYCN amplification (MNA). The calibration curve and receiver operating characteristic (ROC) curve analyses were performed to verify the prediction performance. Post hoc analysis was conducted to compare whether the constructed M-model can distinguish MYCN gain from MNA. Results: The M-model showed excellent predictive performance in differentiating MYCN wild from MYCN gain and MNA, which was better than that of the B-model and R-model [area under the curve (AUC) 0.83, 95% confidence interval (CI): 0.74-0.92 vs. 0.81, 95% CI: 0.72-0.90 and 0.79, 95% CI: 0.69-0.89]. The calibration curve showed that the M-model had the highest reliability. Post hoc analysis revealed the great potential of the M-model in differentiating MYCN gain from MNA (AUC 0.95, 95% CI: 0.89-1). Conclusions: The M-model model based on bio-omics and radiomics features is an effective tool to distinguish MYCN copy number category in pediatric patients with NB.

7.
Adv Sci (Weinh) ; : e2308021, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561969

RESUMO

The severe Zn-dendrite growth and insufficient carbon-based cathode performance are two critical issues that hinder the practical applications of flexible Zn-ion micro-ssupercapacitors (FZCs). Herein, a self-adaptive electrode design concept of the synchronous improvement on both the cathode and anode is proposed to enhance the overall performance of FZCs. Polypyrrole doped with anti-expansion graphene oxide and acrylamide (PPy/GO-AM) on the cathode side can exhibit remarkable electrochemical performance, including decent capacitance and cycling stability, as well as exceptional mechanical properties. Meanwhile, a robust protective polymeric layer containing reduced graphene oxide and polyacrylamide is self-assembled onto the Zn surface (rGO/PAM@Zn) at the anode side, by which the "tip effect" of Zn small protuberance can be effectively alleviated, the Zn-ion distribution homogenized, and dendrite growth restricted. Benefiting from these advantages, the FZCs deliver an excellent specific capacitance of 125 mF cm-2 (125 F cm-3) at 1 mA cm-2, along with a maximum energy density of 44.4 µWh cm-2, and outstanding long-term durability with 90.3% capacitance remained after 5000 cycles. This conformal electrode design strategy is believed to enlighten the practical design of high-performance in-plane flexible Zn-based electrochemical energy storage devices (EESDs) by simultaneously tackling the challenges faced by Zn anodes and capacitance-type cathodes.

8.
Oncogene ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609499

RESUMO

Triple-negative breast cancer (TNBC) is an exceptionally aggressive subtype of breast cancer. Despite the recognized interplay between tumors and tumor-associated macrophages in fostering drug resistance and disease progression, the precise mechanisms leading these interactions remain elusive. Our study revealed that the upregulation of collagen type V alpha 1 (COL5A1) in TNBC tissues, particularly in chemoresistant samples, was closely linked to an unfavorable prognosis. Functional assays unequivocally demonstrated that COL5A1 played a pivotal role in fueling cancer growth, metastasis, and resistance to doxorubicin, both in vitro and in vivo. Furthermore, we found that the cytokine IL-6, produced by COL5A1-overexpressing TNBC cells actively promoted M2 macrophage polarization. In turn, TGFß from M2 macrophages drived TNBC doxorubicin resistance through the TGFß/Smad3/COL5A1 signaling pathway, establishing a feedback loop between TNBC cells and macrophages. Mechanistically, COL5A1 interacted with TGM2, inhibiting its K48-linked ubiquitination-mediated degradation, thereby enhancing chemoresistance and increasing IL-6 secretion. In summary, our findings underscored the significant contribution of COL5A1 upregulation to TNBC progression and chemoresistance, highlighting its potential as a diagnostic and therapeutic biomarker for TNBC.

10.
Analyst ; 149(9): 2621-2628, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38546096

RESUMO

17ß-Estradiol (E2) is an important endogenous estrogen, which disturbs the endocrine system and poses a threat to human health because of its accumulation in the human body. Herein, a biofuel cell (BFC)-based self-powered electrochemical aptasensor was developed for E2 detection. Porous carbon nanocage/gold nanoparticle composite modified indium tin oxide (CNC/AuNP/ITO) and glucose oxidase modified CNC/AuNP/ITO were used as the biocathode and bioanode of BFCs, respectively. [Fe(CN)6]3- was selected as an electroactive probe, which was entrapped in the pores of positively charged magnetic Fe3O4 nanoparticles (PMNPs) and then capped with a negatively charged E2 aptamer to form a DNA bioconjugate. The presence of the target E2 triggered the entrapped [Fe(CN)6]3- probe release due to the removal of the aptamer via specific recognition, which resulted in the transfer of electrons produced by glucose oxidation at the bioanode to the biocathode and produced a high open-circuit voltage (EOCV). Consequently, a "signal-on" homogeneous self-powered aptasensor for E2 assay was realized. Promisingly, the BFC-based self-powered aptasensor has particularly high sensitivity for E2 detection in the concentration range of 0.5 pg mL-1 to 15 ng mL-1 with a detection limit of 0.16 pg mL-1 (S/N = 3). Therefore, the proposed BFC-based self-powered electrochemical aptasensor has great promise to be applied as a successful prototype of a portable and on-site bioassay in the field of environment monitoring and food safety.


Assuntos
Aptâmeros de Nucleotídeos , Fontes de Energia Bioelétrica , Carbono , Técnicas Eletroquímicas , Estradiol , Ouro , Nanopartículas Metálicas , Estradiol/química , Estradiol/análise , Aptâmeros de Nucleotídeos/química , Ouro/química , Nanopartículas Metálicas/química , Carbono/química , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Técnicas Biossensoriais/métodos , Limite de Detecção , Humanos , DNA/química , Glucose Oxidase/química , Compostos de Estanho/química
11.
Mol Cancer Res ; 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38441563

RESUMO

Aberrant long noncoding RNAs just proximal to Xist (lncRNA JPX) expression levels have been detected in multiple tumors. However, whether JPX is involved in melanoma progression remains unclear. Our study showed that JPX expression is significantly increased in melanoma tissues and cell lines. To clarify the effect of JPX on cutaneous melanoma, we successfully generated JPX-overexpressing or JPX-knockdown A375 and A2058 cells. CCK-8, colony formation, EdU, Transwell, and cell cycle phase assays were performed, and subcutaneously implanted tumor models were used to determine the function of JPX in cutaneous melanoma. The results showed that JPX knockdown reduced the proliferation and migration of malignant melanoma cells both in vitro and in vivo. To further elucidate the molecular mechanism of JPX-induced cutaneous melanoma deterioration, we performed RNA pull-down, RIP, Co-IP, Western blot, and RNA-seq analyses. JPX can directly interact with YTHDF2 and impede the protection of YTHDF2 from ubiquitin-specific protease 10 (USP10), which promotes its deubiquitination. Thus, JPX decreases protein stability and promotes the degradation of YTHDF2, thereby stabilizing BMP2 mRNA and activating AKT phosphorylation. Overall, our study revealed a novel effect of JPX on YTHDF2 ubiquitination, suggesting the possibility of blocking the JPX/USP10/YTHDF2/BMP2 axis as a prospective therapeutic approach for cutaneous melanoma. Implications: This study highlights the ubiquitination effect of USP10 and JPX on YTHDF2 in cutaneous melanoma, and proposes that the JPX/USP10/YTHDF2/BMP2 axis may be a prospective therapeutic target for cutaneous melanoma.

12.
ACS Appl Mater Interfaces ; 16(13): 15701-15717, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38507687

RESUMO

Although topical application of minoxidil is a widely used, FDA-approved therapy for androgenetic alopecia (AGA) treatment, it suffers from low bioavailability, the requirement for frequent long-term use, and side effects. With a similar structure as minoxidil, kopexil and kopyrrol are less toxic and have been commercialized, but show an inferior hair regeneration effect compared to minoxidil. Herein, we developed a hyaluronic acid (HA)-based dissolvable microneedles (MNs) delivery platform integrated with kopexil and kopyrrol coencapsulated nanoliposomes (KK-NLPs) to effectively and safely treat AGA. Facilitated by nanoliposomes and MNs, the encapsulated KK-NLPs performed efficient skin penetration and enhanced cellular internalization into human dermal papilla cells. Furthermore, within the target cells, the codelivered kopexil and kopyrrol show synergistic effects by orchestrating an upregulation in the expression of Ki67, ß-catenin, vascular endothelial growth factor (VEGF), and CD31. These molecular responses collectively foster cell proliferation, migration, and antioxidative effects, thereby facilitating the expedited progression of hair follicles (HFs) into the anagen phase and promoting peripheral angiogenesis. Notably, the KK-NLPs-integrated MNs treatment group exhibits noteworthy enhanced hair regeneration in vivo, with identical or superior therapeutic effects at a much lower dosage than that of minoxidil. These results suggest the great potential of this kopexil and kopyrrol codelivery nanoliposomes-integrated MNs platform for AGA treatment in a safe and efficient way.


Assuntos
Minoxidil , Fator A de Crescimento do Endotélio Vascular , Humanos , Minoxidil/farmacologia , Minoxidil/uso terapêutico , Fator A de Crescimento do Endotélio Vascular/metabolismo , Alopecia/tratamento farmacológico , Alopecia/induzido quimicamente , Alopecia/metabolismo , Cabelo , Folículo Piloso , Resultado do Tratamento
13.
Sci Total Environ ; 924: 171514, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38458440

RESUMO

Microplastics (MPs) and antibiotics, as two major types of emerging pollutants, inevitably coexist in the soil environment due to agricultural film residue, sewage irrigation and sludge application. However, the impact of MPs on antibiotic availability in soils with varying characteristics has not been extensively studied. Therefore, in this study, an interference experiment was conducted using three types of MPs (polyethylene (PE), polyvinyl chloride (PVC) and polypropylene (PP)) in red soil, paddy soil and cinnamon soil. The available antibiotics in soils were evaluated using diffusive gradients in thin-films (DGT). Results showed that MPs had a significant impact on the amount of antibiotics adsorbed on soil solid (Cs) by providing additional binding sites or altering soil characteristics (e.g., pH and dissolved organic carbon). The most significant effects on Cs were observed in cinnamon soil, and the Cs values were dependent on concentration of MPs. The available antibiotics, as measured by DGT significantly decreased after the addition of MPs. This decrease was influenced by the soil characteristics. However, the concentration of antibiotics in soil solutions (Cd) was only slightly impacted by MPs. Therefore, the influence of MPs on the migration of antibiotics was reflected by their impact on the soil/water partition coefficient (Kd), while the resupply ability (R) from the soil solid phase was less influential. Moreover, the dosage of MPs had a significant effect on the availability of antibiotics in CS by promoting the adsorption of antibiotics on the solid phase, while in RS and PS, the soil properties played a dominate role in the changes in antibiotic availability after MP addition. These results indicate that the impact of MPs on available antibiotics mainly depends on soil properties. In addition, DGT measurement is more sensitive than soil solution to investigate the effects of coexisting pollutants on the behavior of antibiotics in soil.


Assuntos
Poluentes Ambientais , Poluentes do Solo , Solo/química , Microplásticos , Plásticos , Antibacterianos , Poluentes do Solo/análise , Esgotos
14.
Ther Clin Risk Manag ; 20: 161-168, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38476881

RESUMO

Background: Studies of chylothorax after congenital heart disease in infants are rare. Chylothorax has a higher incidence in infancy, but its risk factors are not well understood. Objective: The purpose of this study is to investigate the risk factors of chylothorax after congenital heart surgery in infants. Methods: This retrospective study included 176 infants who underwent congenital heart disease surgery at the Guangdong Cardiovascular Institute, China, between 2016 and 2020. According to the occurrence of chylothorax, the patients were divided into a control group (n = 88) and a case group (n = 88). Univariate and multivariate logistic regression were performed to analyse the incidence and influencing factors of chylothorax after congenital heart surgery in infants. Results: Between 2016 and 2020, the annual incidence rate fluctuated between 1.55% and 3.17%, and the total incidence of chylothorax was 2.02%. Multivariate logistic regression analysis showed that postoperative albumin (p = 0.041; odds ratio [OR] = 0.095), preoperative mechanical ventilation (p = 0.001; OR = 1.053) and preterm birth (p = 0.002; OR = 5.783) were risk factors for postoperative chylothorax in infants with congenital heart disease. Conclusion: The total incidence of chylothorax was 2.02% and the annual incidence rate fluctuated between 1.55% and 3.17% between 2016 and 2020. Premature infants, longer preoperative mechanical ventilation and lower albumin after congenital heart surgery may be risk factors for chylothorax. In addition, infants with chylothorax are inclined to be infected, need more respiratory support, use a chest drainage tube for longer and remain longer in hospital.

15.
J Med Internet Res ; 26: e48557, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38376899

RESUMO

BACKGROUND: Psychological distress is common among patients with acute coronary syndrome (ACS) and has considerable adverse impacts on disease progression and health outcomes. Mindfulness-based intervention is a promising complementary approach to address patients' psychological needs and promote holistic well-being. OBJECTIVE: This study aims to examine the effects of a social media-based mindfulness psycho-behavioral intervention (MCARE) on psychological distress, psychological stress, health-related quality of life (HRQoL), and cardiovascular risk factors among patients with ACS. METHODS: This study was a 2-arm, parallel-group randomized controlled trial. We recruited 178 patients (mean age 58.7, SD 8.9 years; 122/178, 68.5% male) with ACS at 2 tertiary hospitals in Jinan, China. Participants were randomly assigned to the MCARE group (n=89) or control group (n=89). The 6-week intervention consisted of 1 face-to-face session (phase I) and 5 weekly WeChat (Tencent Holdings Ltd)-delivered sessions (phase II) on mindfulness training and health education and lifestyle modification. The primary outcomes were depression and anxiety. Secondary outcomes included psychological stress, HRQoL, and cardiovascular risk factors (ie, smoking status, physical activity, dietary behavior, BMI, blood pressure, blood lipids, and blood glucose). Outcomes were measured at baseline (T0), immediately after the intervention (T1), and 12 weeks after the commencement of the intervention (T2). RESULTS: The MCARE group showed significantly greater reductions in depression (T1: ß=-2.016, 95% CI -2.584 to -1.449, Cohen d=-1.28, P<.001; T2: ß=-2.089, 95% CI -2.777 to -1.402, Cohen d=-1.12, P<.001) and anxiety (T1: ß=-1.024, 95% CI -1.551 to -0.497, Cohen d=-0.83, P<.001; T2: ß=-0.932, 95% CI -1.519 to -0.346, Cohen d=-0.70, P=.002). Significantly greater improvements were also observed in psychological stress (ß=-1.186, 95% CI -1.678 to -0.694, Cohen d=-1.41, P<.001), physical HRQoL (ß=0.088, 95% CI 0.008-0.167, Cohen d=0.72, P=.03), emotional HRQoL (ß=0.294, 95% CI 0.169-0.419, Cohen d=0.81, P<.001), and general HRQoL (ß=0.147, 95% CI 0.070-0.224, Cohen d=1.07) at T1, as well as dietary behavior (ß=0.069, 95% CI 0.003-0.136, Cohen d=0.75, P=.04), physical activity level (ß=177.542, 95% CI -39.073 to 316.011, Cohen d=0.51, P=.01), and systolic blood pressure (ß=-3.326, 95% CI -5.928 to -0.725, Cohen d=-1.32, P=.01) at T2. The overall completion rate of the intervention (completing ≥5 sessions) was 76% (68/89). Positive responses to the questions of the acceptability questionnaire ranged from 93% (76/82) to 100% (82/82). CONCLUSIONS: The MCARE program generated favorable effects on psychological distress, psychological stress, HRQoL, and several aspects of cardiovascular risk factors in patients with ACS. This study provides clues for guiding clinical practice in the recognition and management of psychological distress and integrating the intervention into routine rehabilitation practice. TRIAL REGISTRATION: Chinese Clinical Trial Registry ChiCTR2000033526; https://www.chictr.org.cn/showprojEN.html?proj=54693.


Assuntos
Síndrome Coronariana Aguda , Atenção Plena , Mídias Sociais , Humanos , Masculino , Pessoa de Meia-Idade , Feminino , Síndrome Coronariana Aguda/terapia , Qualidade de Vida , Terapia Comportamental
16.
Oncogene ; 43(14): 1019-1032, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38366145

RESUMO

Breast cancer is one of the major malignant tumors among women worldwide. Long noncoding RNAs (lncRNAs) have been documented as significant modulators in the development and progression of various cancers; however, the contribution of lncRNAs to breast cancer remains largely unknown. In this study, we found a novel lncRNA (NONHSAT137675) whose expression was significantly increased in the breast cancer tissues. We named the novel lncRNA as lncRNA PRBC (PABPC1-related lncRNA in breast cancer) and identified it as a key lncRNA associated with breast cancer progression and prognosis. Functional analysis displayed that lncRNA PRBC could promote autophagy and progression of breast cancer. Mechanistically, we verified that lncRNA PRBC physically interacted with PABPC1 through RIP assay, and PABPC1 overexpression could reverse the inhibiting effect of lncRNA PRBC knockdown on the malignant behaviors in breast cancer cells. Knockdown of lncRNA PRBC interfered the translocation of PABPC1 from nucleus to cytoplasm as indicated by western blot and IF assays. Significantly, the cytoplasmic location of PABPC1 was required for the interaction between PABPC1 and AGO2, which could be enhanced by lncRNA PRBC overexpression, leading to strengthened recruitment of mRNA to RNA-induced silencing complex (RISC) and thus reinforcing the inhibition efficiency of miRNAs. In general, lncRNA PRBC played a critical role in malignant progression of breast cancer by inducing the cytoplasmic translocation of PABPC1 to further regulate the function of downstream miRNAs. This study provides novel insight on the molecular mechanism of breast cancer progression, and lncRNA PRBC might be a promising therapeutic target and prognostic predictor for breast cancer.


Assuntos
Neoplasias da Mama , Proteína I de Ligação a Poli(A) , RNA Longo não Codificante , Feminino , Humanos , Autofagia/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Proteína I de Ligação a Poli(A)/genética , Proteína I de Ligação a Poli(A)/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética
17.
World J Surg Oncol ; 22(1): 41, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38303008

RESUMO

BACKGROUND: Invasive mucinous adenocarcinoma of the lung (IMA) is a unique and rare subtype of lung adenocarcinoma with poorly defined prognostic factors and highly controversial studies. Hence, this study aimed to comprehensively identify and summarize the prognostic factors associated with IMA. METHODS: A comprehensive search of relevant literature was conducted in the PubMed, Embase, Cochrane, and Web of Science databases from their inception until June 2023. The pooled hazard ratio (HR) and corresponding 95% confidence intervals (CI) of overall survival (OS) and/or disease-free survival (DFS) were obtained to evaluate potential prognostic factors. RESULTS: A total of 1062 patients from 11 studies were included. In univariate analysis, we found that gender, age, TNM stage, smoking history, lymph node metastasis, pleural metastasis, spread through air spaces (STAS), tumor size, pathological grade, computed tomography (CT) findings of consolidative-type morphology, pneumonia type, and well-defined heterogeneous ground-glass opacity (GGO) were risk factors for IMA, and spiculated margin sign was a protective factor. In multivariate analysis, smoking history, lymph node metastasis, pathological grade, STAS, tumor size, and pneumonia type sign were found to be risk factors. There was not enough evidence that epidermal growth factor receptor (EGFR) mutations, anaplastic lymphoma kinase (ALK) mutations, CT signs of lobulated margin, and air bronchogram were related to the prognosis for IMA. CONCLUSION: In this study, we comprehensively analyzed prognostic factors for invasive mucinous adenocarcinoma of the lung in univariate and multivariate analyses of OS and/or DFS. Finally, 12 risk factors and 1 protective factor were identified. These findings may help guide the clinical management of patients with invasive mucinous adenocarcinoma of the lung.


Assuntos
Adenocarcinoma de Pulmão , Adenocarcinoma Mucinoso , Neoplasias Pulmonares , Pneumonia , Humanos , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma Mucinoso/cirurgia , Adenocarcinoma Mucinoso/patologia , Pulmão/patologia , Neoplasias Pulmonares/patologia , Metástase Linfática , Estadiamento de Neoplasias , Pneumonia/patologia , Prognóstico , Estudos Retrospectivos , Masculino , Feminino
18.
Proc Natl Acad Sci U S A ; 121(10): e2320559121, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38408237

RESUMO

Basal progenitor cells serve as a stem cell pool to maintain the homeostasis of the epithelium of the foregut, including the esophagus and the forestomach. Aberrant genetic regulation in these cells can lead to carcinogenesis, such as squamous cell carcinoma (SCC). However, the underlying molecular mechanisms regulating the function of basal progenitor cells remain largely unknown. Here, we use mouse models to reveal that Hippo signaling is required for maintaining the homeostasis of the foregut epithelium and cooperates with p53 to repress the initiation of foregut SCC. Deletion of Mst1/2 in mice leads to epithelial overgrowth in both the esophagus and forestomach. Further molecular studies find that Mst1/2-deficiency promotes epithelial growth by enhancing basal cell proliferation in a Yes-associated protein (Yap)-dependent manner. Moreover, Mst1/2 deficiency accelerates the onset of foregut SCC in a carcinogen-induced foregut SCC mouse model, depending on Yap. Significantly, a combined deletion of Mst1/2 and p53 in basal progenitor cells sufficiently drives the initiation of foregut SCC. Therefore, our studies shed light on the collaborative role of Hippo signaling and p53 in maintaining squamous epithelial homeostasis while suppressing malignant transformation of basal stem cells within the foregut.


Assuntos
Carcinoma de Células Escamosas , Transdução de Sinais , Animais , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Carcinoma de Células Escamosas/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Homeostase , Transdução de Sinais/genética , Células-Tronco/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteínas de Sinalização YAP
19.
BJR Case Rep ; 10(1): uaad007, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38352253

RESUMO

Generally, due to the complexity of the skull base structures, it is difficult to differentiate cavernous vascular malformation and meningioma in the cavernous sinus area using conventional imaging studies. Cavernous sinus venous malformation are characterized by increased capillary masses without a direct arterial supply, typically leading to low perfusion. On the other hand, meningiomas receive arterial blood supply to the tumour and often exhibit high perfusion. So, arterial spin labelling (ASL) can be helpful in distinguishing between the 2 tumour types. However, in our specific case of a cavernous sinus venous malformation, the ASL imaging showed hyperperfusion. Further analysis revealed that this hyperperfusion on ASL can occur when cavernous sinus venous malformation is associated with arteriovenous fistula malformation.

20.
Food Res Int ; 178: 113943, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38309869

RESUMO

Formation of starch-polyphenol complexes by high pressure homogenization (HPH) is widely used to reduce starch digestibility and delay the postprandial glycemic response, thereby benefiting obesity and associated metabolic diseases. This study investigated the effect of complexation temperature on multi-scale structures, physicochemical and digestive properties of pea starch-gallic acid (PS-GA) complexes during HPH process, while also elucidating the corresponding molecular mechanism regulating in vitro digestibility. The results demonstrated that elevating complexation temperature from 30 °C to 100 °C promoted the interaction between PS and GA and reached a peak complex index of 9.22 % at 90 °C through non-covalent binding. The enhanced interaction led to the formation of ordered multi-scale structures within PS-GA complexes, characterized by larger particles that exhibited greater thermal stability and elastic properties. Consequently, the PS-GA complexes exhibited substantially reduced digestion rates with the content of resistant starch increased from 28.50 % to 38.26 %. The potential molecular mechanism underlying how complexation temperature regulated digestibility of PS-GA complexes might be attributed to the synergistic effect of the physical barriers from newly ordered structure and inhibitory effect of GA against digestive enzymes. Overall, our findings contribute to the advancement of current knowledge regarding starch-polyphenol interactions and promote the development of functional starches with low postprandial glycemic responses.


Assuntos
Pisum sativum , Amido , Amido/química , Temperatura , Ácido Gálico/química , Digestão , Polifenóis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA